Problem 10038: beaufort_autokey

zmwin ddidb pquoz tlhls vdimw apbma eqwwa qsely infug v

Ok, this is basically a beaufort encryption, which is very similar to vigenere, except that vigeneres additive alphabets have been replaced by a slightly different equation. So in vigenere A encrypts C to A, D to B etc but in beaufort C encrypts C to A, D to Z, etc.

In addition this crypt is an autokey cipher meaning that the key used to encrypt it was some key word followed by the original message.

In the beaufort method of encryption we have what are known as complementary alphabets:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

AZYXWVUTSRQPONMLKJIHGFEDCB

What this means is that if a letter, L1 enciphers a letter L2 to say D then L2 enciphers L1 to X.

Now in the above encipherment we need to check for complementary letters and how far apart they are, so:

A,A:4,5,9

B,Z:5,9,13,27

E,W:4,5,13,35

F,V:3,22

G,U:1,32

H,T:2

I,S:3,12,14,16,29,33

L,P:6,8,8,10,12,20,22

M,O:10,15

N,N:37

So we have a factor of 5, 8 times, 4, 8 times, 3, 9 times. Suffice to say that we are not having much luck here, and it is time to abandon this line of thinking. We had hoped to be able to find the keylength through some trickery but the message is not really long enough. See Gaines for more details.

What we will do now is some trial and error. I'm going to skip some of the working here. Suppose we have tried keylengths from 1 up to 8 and we now arrive at a suspected keylength of 9. Lets split the message into 9 rows:

zblbsv

mpsme

wqval

iudey

noiqi

dzmwn

dtwwf

ilaau

dhpqg

Now why have I done this ? Suppose the key is abcdefghi, so the letter a has encrypted the first letter of the crypt to z. So we decrypt z and get B. Now the key that was used was really abcdefghiB.... and so we can decrypt the letter b from zblbsv, using our new B. And then we can decrypt the l and then the b.... So let's do this and we get BAPOWB. Now the point is that these letters are unlikely in the plaintext, and so we can more or less rule them out. So let's not just do it for a key letter of a, lets do it for all possible key letters:

 zblbsv

a: BAPOWB

b: CBQPXC

c: DCRQYD

d: EDSRZE

e: FETSAF

f: GFUTBG

g: HGVUCH

h: IHWVDI

i: JIXWEJ

j: KJYXFK

k: LKZYGL

l: MLAZHM

m: NMBAIN

n: ONCBJO

o: PODCKP

p: QPEDLQ

q: RQFEMR

r: SRGFNS

s: TSHGOT

t: UTIHPU

u: VUJIQV

v: WVKJRW

w: XWLKSX

x: YXMLTY

y: ZYNMUZ

z: AZONVA

If you look at these then some sets of letters look reasonably good - EDSRZE looks quite good except for the Z which is a bit off putting. Some combinations are clearly very unlikely - like CBQPXC. What we are essentially looking for is a number of high frequency letters (e,t,a,i,n,o,r,s) and few low frequency letters (j,z,x,q,k) and roughly 40% vowels.

Let's expand our table by adding the second set of letters, remember that these will pair up with the first set to form digrams, and we'll look for some favourable matches. I'll put them in the same table but remember that any of the 26 from the first column could combine with any of the 26 in the second column and so on:

 zblbsv mpsme wqval iudey noiqi dzmwn dtwwf ilaau dhpqg

a: BAPOWB OZHVR EOTTI SYVRT NZRBT XYMQD XEIMH SHHHN XQBLF

b: CBQPXC PAIWS FPUUJ TZWSU OASCU YZNRE YFJNI TIIIO YRCMG

c: DCRQYD QBJXT GQVVK UAXTV PBTDV ZAOSF ZGKOJ UJJJP ZSDNH

d: EDSRZE RCKYU HRWWL VBYUW QCUEW ABPTG AHLPK VKKKQ ATEOI

e: FETSAF SDLZV ISXXM WCZVX RDVFX BCQUH BIMQL WLLLR BUFPJ

f: GFUTBG TEMAW JTYYN XDAWY SEWGY CDRVI CJNRM XMMMS CVGQK

g: HGVUCH UFNBX KUZZO YEBXZ TFXHZ DESWJ DKOSN YNNNT DWHRL

h: IHWVDI VGOCY LVAAP ZFCYA UGYIA EFTXK ELPTO ZOOOU EXISM

i: JIXWEJ WHPDZ MWBBQ AGDZB VHZJB FGUYL FMQUP APPPV FYJTN

j: KJYXFK XIQEA NXCCR BHEAC WIAKC GHVZM GNRVQ BQQQW GZKUO

k: LKZYGL YJRFB OYDDS CIFBD XJBLD HIWAN HOSWR CRRRX HALVP

l: MLAZHM ZKSGC PZEET DJGCE YKCME IJXBO IPTXS DSSSY IBMWQ

m: NMBAIN ALTHD QAFFU EKHDF ZLDNF JKYCP JQUYT ETTTZ JCNXR

n: ONCBJO BMUIE RBGGV FLIEG AMEOG KLZDQ KRVZU FUUUA KDOYS

o: PODCKP CNVJF SCHHW GMJFH BNFPH LMAER LSWAV GVVVB LEPZT

p: QPEDLQ DOWKG TDIIX HNKGI COGQI MNBFS MTXBW HWWWC MFQAU

q: RQFEMR EPXLH UEJJY IOLHJ DPHRJ NOCGT NUYCX IXXXD NGRBV

r: SRGFNS FQYMI VFKKZ JPMIK EQISK OPDHU OVZDY JYYYE OHSCW

s: TSHGOT GRZNJ WGLLA KQNJL FRJTL PQEIV PWAEZ KZZZF PITDX

t: UTIHPU HSAOK XHMMB LROKM GSKUM QRFJW QXBFA LAAAG QJUEY

u: VUJIQV ITBPL YINNC MSPLN HTLVN RSGKX RYCGB MBBBH RKVFZ

v: WVKJRW JUCQM ZJOOD NTQMO IUMWO STHLY SZDHC NCCCI SLWGA

w: XWLKSX KVDRN AKPPE OURNP JVNXP TUIMZ TAEID ODDDJ TMXHB

x: YXMLTY LWESO BLQQF PVSOQ KWOYQ UVJNA UBFJE PEEEK UNYIC

y: ZYNMUZ MXFTP CMRRG QWTPR LXPZR VWKOB VCGKF QFFFL VOZJD

z: AZONVA NYGUQ DNSSH RXUQS MYQAS WXLPC WDHLG RGGGM WPAKE

Ok, so we now have the full set of possibilities and choosing one group from the 26 in each column will solve the whole problem for us.

The easiest way forward is to choose the best possibilities from each column using our knowledge of the english language and letter frequencies and write them down as follows, remembering as we go that we expect in the region of 40% vowels, which would roughly be 1-4 vowels in each group:

------ ** COLUMN 1

EDSRZE ** but dont like the Z

FETSAF ** but dont like the two Fs

NMBAIN

TSHGOT

------ ** COLUMN 2

PAIWS

TEMAW

ALTHD

BMUIE

HSAOK ** but dont like the K

ITBPL

----- ** COLUMN 3

EOTTI ** looks very good

DNSSH ** no vowels!

----- ** COLUMN 4

BHEAC

FLIEG

MSPLN ** no vowels

----- ** COLUMN 5

OASCU

AMEOG

GSKUM ** but dont like the K

IUMWO

OURNP

----- ** COLUMN 6

HIWAN

LMAER

NOCGT

OPDHU

----- ** COLUMN 7

ELPTO

HOSWR

TAEID

----- ** COLUMN 8

TIIIO

LAAAG

PEEEK ** but dont like the K

----- ** COLUMN 9

ATEOI ** looks very good

EXISM ** but dont like the X

Now there are some good groups like ATEOI, TIIIO, EOTTI consisting of high frequency letters only.

So, column 9 with ATEOI looks very good. Lets start with this, and try to add on column 1. We have one of:

 ATEOI

EDSRZE

 ATEOI

FETSAF

 ATEOI

NMBAIN

 ATEOI

TSHGOT

The second one would end the plaintext in 'IF' and looks very strange, so we rule it out. In terms of letter frequencies the last one contains the higher frequency letters and slightly better pairings so we will continue with this and add column 2:

 ATEOI

TSHGOT

PAIWS

 ATEOI

TSHGOT

TEMAW

 ATEOI

TSHGOT

ALTHD

 ATEOI

TSHGOT

BMUIE

 ATEOI

TSHGOT

HSAOK

 ATEOI

TSHGOT

ITBPL

We can immediately rule most of these out from the beginnings TP, TT, TB to the plaintext, leaving:

 ATEOI

TSHGOT

ALTHD

 ATEOI

TSHGOT

HSAOK

 ATEOI

TSHGOT

ITBPL

Of these possibilities I personally find the second one better as the other two require more imagination to continue the words in both directions. For example in the last one THB and EGP must both be on word boundaries to make sense whereas the second one is more natural, let's continue it:

 ATEOI

TSHGOT

HSAOK

EOTTI

 ATEOI

TSHGOT

HSAOK

DNSSH

And immediately we are down to the first option only since THD makes no sense for the word opening, next we have:

 ATEOI

TSHGOT

HSAOK

EOTTI

BHEAC

 ATEOI

TSHGOT

HSAOK

EOTTI

FLIEG

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

Checking all columns we find the third block is best and we come to:

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

OASCU

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

AMEOG

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

GSKUM ** but dont like the K

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

IUMWO

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

OURNP

You should be finding it easier to add new columns now, and we have:

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

AMEOG

Now this time there don't appear to be any good matches, and we have to go back to the original 26 possibilities and pull something out. We come up with:

 ATEOI

TSHGOT

HSAOK

EOTTI

MSPLN

AMEOG

ZAOSF

And after continuing with the last few columns we have:

TSHGOT

HSAOK

EOTTI

MSPLN

AMEOG

ZAOSF

ELPTO

WLLLR

ATEOI

"The Maze was so small that people got lost looking for it".

And our problem has been solved.

So, in the end we solved this problem using our knowledge of the english language, some trial and error, and a good eye. If you find yourself doing this kind of problem and become stuck then it is most useful to write the possibilies onto strips of paper, lay them out on a table and let your eyes and hands have a play about.

Finally let's write in the letters corresponding to these choices:

s: TSHGOT

t: HSAOK

a: EOTTI

u: MSPLN

n: AMEOG

c: ZAOSF

h: ELPTO

e: WLLLR

d: ATEOI

And so we have recovered the key used also, 'staunched'.

Exercise 1 (**easy**)

Let's take another approach to solving this kind of crypt, and one which will also be useful for similar problems of the vigenere / alternative beaufort kind. Your task is to write a computer program that reads in words from a dictionary, and tries them as keys in the crypt. Your main problem is now identifying possible correct decryptions. There are several ways to do this - such as looking for words that are in the dictionary, or using a chi squared test. I leave it up to you to decide which approach you use. Your program should be able to solve the problem above.

Exercise 2 (**medium**)

Ok, the program for exercise 1 is good when the key is a proper word, but what if it is not? This time write a program that prints all the columns, preferably in some kind of order with high frequency groups at the top and low at the bottom. Your program should show a decrypted message and allow the user to try out different groups from each column.

Exercise 3 (**hard**)

In this exercise you will automate the process that I went through above in order to find best possible matches. I leave it to you to decide how to do this, but I will give one possible approach that springs to mind. Make a random choice from each column, and now try substituting different columns in order to improve the text - so you might have a score based on trigrams within the text, and you try to improve that score by swapping a different group into a column. When you've improved it as much as possible see if it is better than the best so far and if it is then print it and store it, if it isn't then just move on to a new random starting point. This is essentially a hill climbing algorithm, as used in my substitution solver. It's only one possible approach, I leave it to you to try others, you might want to emulate how we worked above for example.

